skip to main content


Search for: All records

Creators/Authors contains: "Gazda, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile edge computing (MEC) is an emerging paradigm that integrates computing resources in wireless access networks to process computational tasks in close proximity to mobile users with low latency. In this paper, we propose an online double deep Q networks (DDQN) based learning scheme for task assignment in dynamic MEC networks, which enables multiple distributed edge nodes and a cloud data center to jointly process user tasks to achieve optimal long-term quality of service (QoS). The proposed scheme captures a wide range of dynamic network parameters including non-stationary node computing capabilities, network delay statistics, and task arrivals. It learns the optimal task assignment policy with no assumption on the knowledge of the underlying dynamics. In addition, the proposed algorithm accounts for both performance and complexity, and addresses the state and action space explosion problem in conventional Q learning. The evaluation results show that the proposed DDQN-based task assignment scheme significantly improves the QoS performance, compared to the existing schemes that do not consider the effects of network dynamics on the expected long-term rewards, while scaling reasonably well as the network size increases. 
    more » « less
  2. Wireless data traffic, especially video traffic, continues to increase at a rapid rate. Innovative network architectures and protocols are needed to improve the efficiency of data delivery and the quality of experience (QoE) of mobile users. Mobile edge computing (MEC) is a new paradigm that integrates computing capabilities at the edge of the wireless network. This paper presents a computation-capable and programmable wireless access network architecture to enable more efficient and robust video content delivery based on the MEC concept. It incorporates in-network data processing and communications under a unified software-defined networking platform. To address the multiple resource management challenges that arise in exploiting such integration, we propose a framework to optimize the QoE for multiple video streams, subject to wireless transmission capacity and in-network computation constraints. We then propose two simplified algorithms for resource allocation. The evaluation results demonstrate the benefits of the proposed algorithms for the optimization of video content delivery. 
    more » « less